- Zermelo theorem
- Математика: теорема Цермело
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Zermelo set theory — Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article… … Wikipedia
Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… … Wikipedia
Theorem — The Pythagorean theorem has at least 370 known proofs[1] In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements … Wikipedia
Borel determinacy theorem — In descriptive set theory, the Borel determinacy theorem shows that any Gale Stewart game whose winning set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game. It was proved by Donald A.… … Wikipedia
Boolean prime ideal theorem — In mathematics, a prime ideal theorem guarantees the existence of certain types of subsets in a given abstract algebra. A common example is the Boolean prime ideal theorem, which states that ideals in a Boolean algebra can be extended to prime… … Wikipedia
Ernst Zermelo — Ernst Friedrich Ferdinand Zermelo (July 27 1871, Berlin, German Empire – May 21 1953, Freiburg im Breisgau, West Germany) was a German mathematician, whose work has major implications for the foundations of mathematics and hence on… … Wikipedia
Gödel's completeness theorem — is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first order logic. It was first proved by Kurt Gödel in 1929. A first order formula is called logically valid if… … Wikipedia
Löwenheim-Skolem-Theorem — Das Löwenheim Skolem Theorem besagt, dass eine Menge von Aussagen der Prädikatenlogik erster Stufe, die in einem Modell mit einer überabzählbar unendlich großen Domäne erfüllt ist, immer auch in einem Modell mit einer abzählbar unendlich großen… … Deutsch Wikipedia
Cantor's theorem — Note: in order to fully understand this article you may want to refer to the set theory portion of the table of mathematical symbols. In elementary set theory, Cantor s theorem states that, for any set A , the set of all subsets of A (the power… … Wikipedia
Well-ordering theorem — The well ordering theorem (not to be confused with the well ordering axiom) states that every set can be well ordered.This is important because it makes every set susceptible to the powerful technique of transfinite induction.Georg Cantor… … Wikipedia
Löwenheim–Skolem theorem — In mathematical logic, the Löwenheim–Skolem theorem, named for Leopold Löwenheim and Thoralf Skolem, states that if a countable first order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ. The… … Wikipedia